Kostenfreies Exemplar: info@pem.rwth-aachen.de

KOMPONENTEN-HERSTELLUNG EINER LITHIUM-IONEN-BATTERIEZELLE

2. Auflage, 2023

Batterieproduktion

Der Lehrstuhl "Production Engineering of E-Mobility Components" (PEM) der RWTH Aachen forscht seit vielen Jahren zur Lithium-Ionen-Batterieproduktion. Das Themenfeld erstreckt sich dabei vom Automotive-Bereich bis hin zu stationären Anwendungen. Durch die Teilnahme an zahlreichen nationalen und internationalen Industrieprojekten mit Unternehmen sämtlicher Wertschöpfungsstufen sowie dank Schlüsselpositionen in renommierten Forschungsprojekten bietet PEM weitreichende Expertise.

Der VDMA vertritt mehr als 3.700 deutsche und europäische Unternehmen des Maschinen- und Anlagenbaus. Die dortige Fachabteilung Batterieproduktion fungiert als Ansprechpartner für sämtliche Fragen rund um den Batterie-Maschinen- und Anlagenbau. Dafür recherchiert sie Technologie- und Marktinformationen, veranstaltet Kunden-Events und Roadshows, bietet Plattformen für den Austausch innerhalb der Branche und steht im fortwährenden Dialog mit Forschung und Wissenschaft.

PEM der RWTH Aachen Production Engineering of E-Mobility Components der RWTH Aachen Bohr 12 52072 Aachen www.pem.rwth-aachen.de

VDMA Batterieproduktion Lyoner Straße 18 60528 Frankfurt am Main

https://vdma.org/batterieproduktionsmittel

Autor*innen

PEM der RWTH Aachen

Prof. Dr.-Ing. Heiner Hans Heimes Mitglied der Institutsleitung h.heimes@pem.rwth-aachen.de

Prof. Dr.-Ing. Achim Kampker, M.B.A. Gründer/Leiter des Lehrstuhls a.kampker@pem.rwth-aachen.de

Dr.-Ing. Christian Offermanns Oberingenieur c.offermanns@pem.rwth-aachen.de

Nikolaus Lackner, M. Sc. Battery Components & Recycling n.lackner@pem.rwth-aachen.de

Timon Elliger, M. Sc. Battery Components & Recycling t.elliger@pem.rwth-aachen.de

Valentin Mussehl, M. Sc. Battery Components & Recycling v.mussehl@pem.rwth-aachen.de

VDMA

Dr. Sarah Michaelis

Leiterin Batterieproduktion VDMA Batterieproduktion sarah.michaelis@vdma.org

Jennifer Zienow

VDMA Batterieproduktion jennifer.zienow@vdma.org

IBU | tec

Ein besonderer Dank gilt dem Unternehmen IBU-tec für die Unterstützung beim neuen Kapitel zu LFP-Kathodenmaterial.

Frankfurt am Main, Dezember 2023 PEM der RWTH Aachen & VDMA, Eigendruck, 2. Auflage ISBN: 978-3-947920-49-5

Vorwort

Komponentenherstellung einer Lithium-Ionen-Batteriezelle

- Die Menge der verkauften Lithium-Ionen-Batterien (LIB) steigt in den kommenden Jahren wegen des wachsenden Inverkehrbringens von Elektrofahrzeugen signifikant an, wodurch die Produktion von Komponenten, die in Batteriezellen verbaut werden, aus ökonomischen und ökologischen Gründen immer größere Aufmerksamkeit erfährt.
- Die Produktion von Batteriekomponenten etwa Aktivmaterial der Anode und Kathode sowie inaktive Komponenten der äußeren Hülle oder der Separator – ist verantwortlich für große Teile der Wertschöpfung und der CO₂-Emissionen.
- Zur Umsetzung nachhaltiger Konzepte im Bereich der Batteriekomponentenproduktion ist ein besseres Verständnis der bestehenden Prozesse notwendig.
- Der vorliegende Leitfaden trägt den Stand der Technik in der Produktion unterschiedlicher Batteriekomponenten zusammen.

Inhaltsverzeichnis

Komponentenherstellung einer Lithium-Ionen-Batteriezelle

1. Grundlagen der Batteriekomponenten

- Aufbau einer Batteriezelle
- Batteriezellkomponenten
- Kathodenmaterialien
- Anodenmaterialien

2. Aktivmaterialherstellung

- Kathodenmaterial
 - LFP
 - NMC
- Anodenmaterial
 - Synthetisch
 - Natürlich
- Elektrolyt

3. Herstellung inaktiver Komponenten

- Elektrodenfolie
- Separator
- Zellgehäuse

Aufbau einer Batteriezelle

Grundlagen der Batteriekomponenten

Aktivmaterialien			Inaktive Komponenten		
Kathode NMC Kathode LFP	Anode	Elektrolyt	Stromableiter	Separator	Gehäuse

Beschreibung

- Eine Batteriezelle besteht aus einer **positiv** und einer **negativ** geladenen **Elektrode**, einem Separator sowie einer **Elektrolytlösung**.
- Die positive Elektrode (Kathode) setzt sich aus einer 15 25 µm dicken Aluminiumfolie als Stromableiter, dem darüberliegenden Aktivmaterial (bspw. Nickel-Mangan-Kobalt-Oxid – NMC oder Lithium-Eisen-Phosphat – LFP) und Additiven zusammen.
- Die negative Elektrode (Anode) besteht aus einer 8 18 µm dicken Kupferfolie, die mit Aktivmaterial (Graphit) und Additiven beschichtet ist.
- Beide Elektroden sind durch den Separator elektrisch voneinander isoliert.
- Der Elektrolyt durchtränkt das Zellinnere und ermöglicht den Ionenfluss. Er wird nach der Zellassemblierung in die Batteriezelle eingespritzt und besteht üblicherweise aus Lithium-Hexafluorophosphat und einem Lösemittel wie DMC sowie Additiven in unterschiedlichen Verhältnissen.
- Die Herstellung dieser Materialien kann grundsätzlich in die Produktion der Kathodenmaterialien, der Anodenaktivmaterialien, des Elektrolyten und der inaktiven Materialien unterteilt werden.

- Aufgabe des Aktivmaterials ist es, Lithium-Ionen einzulagern und diese im Ladebeziehungsweise Entladevorgang wieder abzugeben.
- Die Elektrolytlösung durchtränkt das Zellinnere und ermöglicht Ionenfluss.
- Der Elektrolyt besitzt Lithium-Ionen-Leitfähigkeit, so dass diese sich bewegen können.

Batteriezellkomponenten

Grundlagen der Batteriekomponenten

¹ Basierend auf einer NMC622-Kathodenchemie

² Basierend auf Materialpreisen im Jahr 2023

Aktivmaterialien			Inaktive Komponenten		
Kathode NMC Kathode LFP	Anode	Elektrolyt	Stromableiter	Separator	Gehäuse

Beschreibung

- Die Hauptbestandteile eines Batteriesystems sind Aluminium, Kupfer, Anodenmaterial, Kathodenmaterial und sonstige Bestandteile (Elektrolyt, Plastik, Stahl, Separator etc.).
- Aluminium und Kupfer werden als Stromableiter eingesetzt. Zusätzlich wird Aluminium f
 ür die Geh
 äuse der Zellen verwendet.
- Als Anodenmaterial kommt in mehr als 90 Prozent der Zellen Graphit zum Einsatz. Die Zusammensetzung des Kathodenmaterials variiert stark, meist werden jedoch Lithium-Nickel-Mangan-Kobalt-Oxid (NMC) oder Lithiumeisenphosphat (LFP) verwendet.
- Während die Kathodenmaterialien nur knapp 20 Prozent des Materialgewichts ausmachen, sind sie bei NMC-Kathoden für knapp 70 Prozent des Materialwerts verantwortlich.
- Um Batteriezellpreise niedrig zu halten beziehungsweise Elektromobilität günstiger anbieten zu können, müssen preisliche Herausforderungen bei der Produktion von Batteriekomponenten wie Kathoden- oder Anodenaktivmaterial gelöst werden.
- Batteriekomponentenherstellung als wachsender Markt ermöglicht es zahlreichen europäischen Anlagenbauern und Materialproduzenten sowie Chemiekonzernen, sich in diesem Markt zu etablieren und eine langfristig nachhaltige Wirtschaft voranzutreiben.

- Zur Ermöglichung wirtschaftlich tragbarer Prozesse muss das Aktivmaterial höchste Standards erfüllen, um die Qualität der Batteriezelle zu garantieren, Ausschussraten in der Produktion zu senken und Sicherheit zu gewährleisten.
- Da der Markt f
 ür Batteriematerialien und -komponenten sowie deren Anforderungen äu
 ßerst volatil sind, gelten die Informationen dieses Leitfadens als Momentaufnahme.

Kathodenmaterialien

Grundlagen der Batteriekomponenten

Beschreibung

- In der obenstehenden Grafik sind die Massenanteile der f
 ünf wichtigsten Kathoden-Aktivmaterialen aus dem Jahr 2023 dargestellt.
- Der Anteil hochnickelhaltiger Kathodenmaterialien (NMC622 und NMC811) hat in den vergangenen Jahren gegenüber NMC111 stark zugenommen.
- LFP nimmt vor allem in China eine bedeutende Rolle ein. Dort existiert außerdem die Variante LFMP, in die niedrige Anteile von Mangan (Mn) integriert sind, wodurch die Energiedichte des Zellmaterials steigt
- NCA (Nickel-Kobalt-Aluminium-Oxid) wurde von Tesla lange Zeit bevorzugt, verliert aber als Kathodenmaterial immer mehr Bedeutung.
- Die stark schwankenden Rohstoffpreise und die begrenzten Förderkapazitäten der enthaltenen Elemente sorgen für das **Streben** der Batteriezellhersteller **nach Rohstoffsicherheit**, die sich unter anderem durch den Wechsel zu **alternativen Zellchemien** oder das **Recycling** verwirklichen lässt.
- Diese Schwankungen entstehen auch aufgrund der langen Lieferketten, da die Rohstoffvorkommen auf bestimmte Länder begrenzt sind.

- Aktuell gibt es eine starke Marktkonzentration auf NMC-Kathodenmaterialien, die kosten- und emissionsintensive Grundmaterialien beinhalten.
- LFP gewinnt durch hohe Lebensdauer und niedrige Materialpreise an Bedeutung.
- Die Tendenz zu hohen Nickel-Anteilen scheint sich fortzusetzen.

Grundlagen der Batteriekomponenten

Beschreibung

- In der obenstehenden Grafik sind die Massenanteile der vier wichtigsten Anoden-Aktivmaterialen aus dem Jahr 2023 dargestellt. Graphit und Graphit-Silizium dominieren den Markt, Silizium und Lithium-Anoden werden derzeit nicht großindustriell produziert und stellen eher eine zukünftige Alternative dar.
- Silizium wird Graphit-Anoden beigemischt, um die Energiedichte zu erhöhen. Derzeit sind Massenanteile von weniger als 20 Prozent möglich. Im Massenmarkt ist diese Anodenzusammensetzung jedoch noch nicht angekommen.
- Reine Silizium-Anoden können theoretisch sehr hohe Energiedichten ermöglichen. Größte Herausforderung bei ihrer Implementierung ist derzeit, dass die Anode beim Lade- und Entladevorgang ihr Volumen stark verändert (um bis zu 300 Prozent). Dies geht oftmals mit einer äußerst kurzen Lebensdauer der Batteriezelle einher. Es gibt einige Unternehmen mit vielversprechenden Ansätzen, um dieser Herausforderung zu begegnen, so dass reine Silizium-Anoden in einigen Jahren möglich sein dürften.
- Reine Lithium-Anoden ermöglichen theoretisch eine noch höhere Energiedichte als Silizium- und Graphit-Anoden. Ihre größte Herausforderung besteht aktuell darin, dass sie in Kombination mit flüssigen Elektrolyten nicht stabil sind. Mit der Implementierung von Festkörperbatterien (All-Solid-State Batteries – ASSB) könnte also auch eine Anodenrevolution einhergehen. Nachteilig ist bei Lithium-Anoden zudem, dass der Ausgangsstoff teuer und knapp ist.

- Graphit dominiert als Anodenmaterial derzeit den Markt und dürfte auch im kommenden Jahrzehnt nicht abgelöst werden.
- Es existieren vielversprechende Alternativen, die Energiedichte und Leistung von Batterien in Zukunft maßgeblich steigern können.

LFP-Übersicht Aktivmaterialherstellung: LFP-Kathodenmaterial

I UM ENT = 201 KV Stgmal A = InLens ESB Orid = 1917 V Width = 11.42 µm WD = 2.2 mm Meg = 11.00 KX Image Paul Ess = 11.11 nm Haight = 8.575 µm

Aktivmaterialien			Inaktive Komponenten		
Kathode NMC	Anada	Floktrobit	Stromablaitar	Constator	Cobäuco
Kathode LFP	Anode	Elektrolyt	Stromableiter	separator	Genause

Beschreibung

Die obere Abbildung zeigt das Olivin-artig angeordnete LFP mit eingelagerten Lithium-Ionen. Im Folgenden werden die Schritte zur Produktion des Lithium-Eisen-Phosphat-Kathodenmaterials veranschaulicht. LFP wird hauptsächlich industriell in einem einstufigen thermischen Verfahren hergestellt, das sich in die Teilprozesse Mahlen und Kalzinierung sowie die abschließende Anwendung auf der Kathode unterteilt. Der Precursor kann entweder über die Karbonat- oder über die Hydroxidroute synthetisiert werden. Dabei fallt die Entscheidung in der Regel auf den günstigeren Rohstoff. LFP kann mit unterschiedlichen Prozessen hergestellt werden. Der nachstehende Prozess ist beispielhaft erklärt.

Lithium-Eisenphosphat (LiFePO₄) verfügt in der Regel über eine geringere Energiedichte als NMC, gleichzeitig aber über eine höhere thermische und chemische Stabilität sowie über eine hohe Lebensdauer. Das Produkt nimmt größere Marktanteile ein und wird im chinesischen Massenmarkt gegenüber NMC bereits favorisiert.

IBU-tec Advanced Materials; Sommerville et al., A qualitative assessment of lithium-ion battery recycling processes, 2020; Kim et al., A comprehensive review on the pretreatment process in lithium-ion battery recycling, 2021

Precursor und Vermahlen

Aktivmaterialherstellung: LFP-Kathodenmaterial

Prozessschritte

- Lithium stammt üblicherweise aus lithiumreichen Solen oder lithiumreichem Gestein beziehungsweise entsprechenden Mineralen und wird von dort aus zu Lithiumhydroxid oder Lithiumkarbonat weiterverarbeitet, die beide in der LFP-Produktion verwendet werden können.
- Phosphat wird üblicherweise aus Phosphatgestein gewonnen und zu Phosphorsäure verarbeitet, bevor es mit in Wasser löslichen Eisenverbindungen reagiert wird, um Eisenphosphat zu erlangen. Als Quelle für Eisensalze können Eisenschrott oder andere vielfältige Quellen verwendet werden. Eisenphosphat und Lithium-Precursor für LFP-Batterien müssen in Batteriequalität vorliegen, während die Vorprodukte des Eisenphosphats diesbezüglich kein gesondertes Batterieedukt darstellen.
- Die Edukte bestehend aus einer Lithium-Quelle, einem Metallphosphat und Zucker beziehungsweise einer Kohlenstoffquelle werden zur Vermischung in eine Mühle gegeben.
- Die Ausgangsstoffe müssen eine **hohe Reinheit** aufweisen, da Verunreinigungen elektrochemisch inerte Phasen bilden können und den Transport der Lithium-Ionen stören.
- Die Lösungen werden dem gewünschten **Stoffmengenverhältnis** von Lithium und Eisenphosphat entsprechend gemischt.

Prozessparameter

- Reinheit der Edukte
- Korrekte Massenströme
- Günstige Edukte (Wahl zwischen LiOH und Li₂CO₃)
- Korrektes Stoffmengenverhältnis

- Homogenität der Korngröße
- Homogenität des Produkts
- Korrektes Stoffmengenverhältnis für den thermischen Prozess
- Partikelgrößenverteilung

Kalzinieren/Pyrolyse

Aktivmaterialherstellung: LFP-Kathodenmaterial

Prozessschritte

- Nach dem trockenen oder nassen Mahlen liegt das LFP-Material homogen vor, wodurch gute Reaktionsfähigkeit gewährleistet wird.
- Das **Kalzinieren** ist für den Gesamtprozess besonders wichtig, weil dabei die endgültige chemische Zusammensetzung des LFP entsteht.
- Die Kalzinierung ist ein Hochtemperaturprozess, bei dem das LFP-Material in einem Ofen erhitzt wird.
- Der Kalzinierungsprozess findet zumeist mehrere Stunden lang bei über 500 °C statt. Die genauen Reaktionsbedingungen sind von den gewünschten Materialparametern abhängig, jedoch findet die Behandlung zumeist unter reiner Stickstoffatmosphäre statt.
- Die Kalzinierung beziehungsweise Pyrolyse sorgt für die Entfernung weiterer flüchtiger Bestandteile aus den LFP-Präkursoren. Dazu gehören etwa Wasser oder flüchtige organische Verbindungen (VOC) aus der Kohlenstoffquelle.
- Nach dem Kalzinieren wird erneut gemahlen, so dass das Material die Produktion homogen und in gleichbleibender Qualität verlässt.

Prozessparameter

- Temperatur: > 500 °C
- Zeitraum: wenige Stunden
- Eduktmischung mit richtiger Homogenität und korrektem Stoffmengenverhältnis
- Reinheitsgrad der Edukte
- Reaktionsatmosphäre: sauerstofffrei

- Partikelgröße
- Homogenität
- Kristallstruktur
- Nebenreaktion
- Reinheit
- Stoffmengenverhältnis

NMC-Übersicht

Aktivmaterialherstellung: NMC-Kathodenmaterial

Aktivmaterialien			Inaktive Komponenten		
Kathode NMC Kathode LFP	Anode	Elektrolyt	Stromableiter	Separator	Gehäuse

Beschreibung

Die obenstehende Abbildung zeigt das schichtweise angeordnete NMC mit eingelagerten Lithium-Ionen. Im Folgenden werden die Produktionsschritte zur Herstellung des **Nickel-Mangan-Kobalt-Kathodenmaterials** veranschaulicht. NMC wird hauptsächlich industriell in einem zweistufigen Verfahren hergestellt, das sich in die Prozessketten des "precursor Cathode Active Material" (pCAM) und des "Cathode Active Material" (CAM) aufteilt.

Sommerville et al., A qualitative assessment of lithium-ion battery recycling processes, 2020; Kim et al., A comprehensive review on the pretreatment process in lithium-ion battery recycling, 2021

pCAM-Herstellung Aktivmaterialherstellung: NMC-Kathodenmaterial Feedstrom Motor ωξ Rühren Fällen Rührwerk Edukte NMC-Precursor + Verunreinigung Zirkulation des Fluids 1 Kontinuierliche Entnahme des gemischten Produkts Trocknen Waschen NMC-Precursor Aktivmaterialien Inaktive Komponenten Kathode NMC Anode Elektrolyt Stromableiter Gehäuse Separator Kathode LFP

Prozessschritte

- Bei der Copräzipitation liegen die drei Edukte Nickel-, Mangan- und Kobaltsulfat in separaten Lösungen vor.
- Die Ausgangsstoffe müssen eine **hohe Reinheit** aufweisen, da Verunreinigungen elektrochemisch inerte Phasen bilden können und den Transport der Lithium-Ionen stören. So reduziert sich die **reversible Kapazität** der Batteriezelle.
- Im Reaktor findet unter schnellem R
 ühren eine F
 ällungsreaktion statt. Es besteht die Gefahr, dass die Metallhydroxide unabh
 ängig voneinander ausfallen.
- Um in der Festkörpersynthese zu NMC-Material weiterverarbeitet werden zu können, muss das Material nach dem Mischen gereinigt und getrocknet werden.
- Das mit Waschmittel gereinigte Material kann entweder mit Hilfe kontinuierlicher Trocknung oder in einem Sprühtrockner getrocknet werden.

Prozessparameter

- Reinheit der Edukte
- pH-Wert: 11 12
- Rührgeschwindigkeit: 1.000 Min.⁻¹
- Temperatur Mischen: 35 80 °C
- Temperatur Trocknen: 100 110 °C
- Stöchiometrisches Verhältnis

Qualitätsmerkmale

- Homogenität
- Agglomeratbildung
- Reinheit
- Restfeuchte
- Viskosität
- pH-Wert

Sommerville et al., A qualitative assessment of lithium-ion battery recycling processes, 2020; Kim et al., A comprehensive review on the pretreatment process in lithium-ion battery recycling, 2021

CAM-Herstellung

Aktivmaterialherstellung: NMC-Kathodenmaterial

Prozessschritte

- Ein Teil des Lithiums verdampft in den nächsten Schritten durch Temperaturbehandlung und muss im Mischprozess durch einen leichten Lithium-Überschuss von fünf bis zehn Prozent kompensiert werden.
- Beim Kalzinieren wird das fertige NMC-Material erzeugt. Dabei legt die Temperatur maßgeblich die Partikelgröße, die Mobilität freier Elektronen und das Kristallwachstum fest.
- Unterschiedliche Temperaturprofile inklusive einer Lithiierung und einer Sinterung erzeugen gezielte Materialeigenschaften in Hochnickel-Kathodenchemien. Das Material durchläuft den Ofen **mehrere** Stunden lang.
- Beim Verdampfen wird Wärme absorbiert, so dass es zur Ausbildung von Temperaturgradienten kommt. Die Erwärmungsrate des Ofens wird gering gehalten, um ungleichmäßige Temperaturverteilungen zu verhindern.
- Die Reaktionsatmosphäre besteht üblicherweise aus reinem Sauerstoff, der dem korrekten Stoffmengenverhältnis von Lithium zu Nickel dient.
- Nach der Kalzinierung wird das fertige NMC-Material gemahlen, um die gewünschte Partikelfeinheit zu erreichen. Dabei wird das Material mit einem Luftstrom in sich selbst gemahlen, bis es die richtige Feinheit erreicht, um das Sieb zu durchlaufen.

Prozessparameter

- Stöchiometrie Li zu NMC: 1,05 1,10
- Partikelgröße: wenige Mikrometer
- Rührgeschwindigkeit
- Eisenfreie Synthesebedingungen
- Temperatur: 500 950 °C
- Temperaturprofil
- Geschwindigk. Luftmühle: 300 m/Sek.
- Partikel Mühle: wenige Mikrometer

- Partikelgröße
- Gleichmäßigkeit der Partikelform
- Reinheit
- Partikelmorphologie
- Homogenität
- Kristallstruktur
- Stoffmengenverhältnis

Nachbehan Aktivmaterialherstellu	dlung ung: NMC	-Kathoden	material	
Beschichtung				
NMC Beschichtetes				
Coating	(PE	
		W. Lora		and the
NMC + kerami- Beschichtetes sche Partikel NMC			~	
Aktivmaterialien		Inak	tive Komponente	n
Kathode NMC Anode Kathode LFP	Elektrolyt	Stromableiter	Separator	Gehäuse
Copräzipitation Waschen	Trocknen	Mischen	Synthese	Klassifizieren

Prozessschritte

- Nach dem Feinstmahlen kann die Zyklenstabilität des Kathodenmaterials durch die Nachbehandlung der NMC-Partikel erhöht werden.
- Dafür eignen sich unter anderem Beschichtungen der NMC-Partikel mit Keramik-Nano-Partikeln.
- Die Beschichtungen können durch nasschemische oder chemische Gasphasenabscheidungsverfahren aufgebracht werden.
- Nach dem nasschemischen Verfahren muss eine Trocknung des beschichteten NMC-Materials vorgenommen werden.
- NMC-Batterien zeichnen sich durch äußerst hohe Energiedichten aus, die sich sehr gut für automobile Anwendungen anbieten.
- Im Vergleich zu LFP-Batterien besitzen NMC-Batterien eine höhere Energiedichte, dafür jedoch weniger Zyklenstabilität und weniger chemische sowie thermische Stabilität.

Prozessparameter

- Beschichtungsmaterial
- Beschichtungsdicke
- Beschichtungsverfahren
- Mischgeschwindigkeit

- Partikelgröße
- Gleichmäßigkeit der Partikelform
- Reinheit der Partikelbeschichtung
- Partikelmorphologie
- Homogenität der Partikelbeschichtung
- Thermische und chemische Stabilität
- Langlebigkeit

Graphit-Übersicht

Aktivmaterialherstellung: Anodenmaterial

Beschreibung

Graphit ist das am häufigsten verwendete Anodenmaterial in Lithium-Ionen-Batterien. Es handelt sich dabei um eine natürliche Erscheinungsform des Elements Kohlenstoff und kristallisiert in einer hexagonalen Kristallstruktur, wie in der oben links stehenden Abbildung erkennbar ist. Die zweidimensionalen Schichten – "Graphen" genannt – werden durch van-der-Waals-Kräfte aneinandergehalten und bilden dadurch eine dreidimensionale Struktur. Zwischen den Ebenen können Lithium-Ionen eingelagert werden, was als "Interkalation" bezeichnet wird. Diese molekulare Struktur äußert sich darin, dass Graphit in der Natur zumeist in flachen Flocken vorliegt ("Flockengraphit"), wie die oben rechts stehende Abbildung zeigt.

Anodengraphit lässt sich grundsätzlich auf zwei Arten gewinnen: Flockengraphit kann zu natürlichem Graphit (siehe unten rechts) verarbeitet oder synthetisches Graphit (siehe unten links) aus unterschiedlichen kohlenstoffhaltigen Vorläufermaterialien in einem thermischen Prozess gewonnen werden.

Awenbauer et al., The success story of graphite as a lithium-ion anode material – fundamentals, 2020; Wurm et al., Anodenmaterial für Lithium-Ionen-Batterien, 2013

Synthetisches Graphit

Aktivmaterialherstellung: Anodenmaterial

Graphitisierung:

Prozessschritte

- Zunächst werden Koks und Pech als Ausgangsstoffe bei mehr als 200 °C im Intensivmischer oder Kneter miteinander vermengt.
- Im nächsten Prozessschritt Kalzinieren wird der entstandene Formkörper bei 800 bis 1.200 °C unter Ausschluss von Luftsauerstoff gebrannt. Ziel ist es, dass das Pech verkohlt und amorpher Kohlenstoff als Bindephase entsteht.
- Im Acheson-Ofen wird die Mischung graphitisiert und erhält durch Anordnung der Graphenschichten seine typische Graphitstruktur.
- Das "Soft Carbon" wird von einer **Widerstandsschüttung** (bspw. körniges Koks) umgeben. Bei Anlegen eines Stroms entwickelt sich aufgrund des elektrischen Widerstands große Hitze.
- Hohe Reinheitsgrade lassen sich durch eine thermische oder thermochemische Modifikation des Prozesses erreichen.
 - Thermisch: Temperatur und Verweilzeit werden erhöht, so dass alle Verunreinigungen verdampfen können.
 - Thermochemisch: Durch Additive werden die Verunreinigungen zu flüchtigen Verbindungen umgesetzt und diffundieren aus dem Graphit.

Prozessparameter

- Kalzinieren bei 800 1.200 °C
- Graphitisieren bei 1.800 3.000 °C
- Verweilzeit: wenige Stunden bis mehrere Wochen (hohe Abkühlzeit insbesondere nach Graphitisierung)
- Spannung: bspw. 40 50 kV
- Strom: bspw. 200 A

- Reinheit
- Partikelform
- Partikelgröße
- Homogenität
- Oberflächenstruktur

Natürliches Graphit Aktivmaterialherstellung: Anodenmaterial Flotation: Angereichertes Graphit Graphitarme Lösung Luftzufuhr Aktivmaterialien Inaktive Komponenten Kathode NMC Elektrolyt Stromableiter Gehäuse Separator Kathode LFP

Prozessschritte

- Natürliches Graphit wird durch konventionellen Bergbau gewonnen.
- Im ersten Prozessschritt wird das Graphit von Nebengestein getrennt. Das Flotieren ist durch die Natur des Graphits auf einfache Weise möglich, da es hydrophob (nicht in Wasser löslich) ist, so dass Graphit mit Luftbläschen aufsteigt und an der Oberfläche schwimmt.
- Mehrere aneinandergereihte M
 ühlen sorgen durch kontinuierliches Mikronisieren und anschlie
 ßendes Sph
 äronisierien f
 ür sph
 ärische Partikel mit hoher Stampfdichte, niedriger Oberfl
 äche und enger Korngr
 ö
 ßenverteilung.
- Anschließend wird das gewonnene Kugelgraphit gereinigt, wobei der Kohlenstoffgehalt auf mehr als 99,95 Prozent steigt.
- Im letzten Prozessschritt (Coating und Karbonisierung) werden die Eigenschaften der verrundeten und gereinigten Partikel verbessert, indem spezielle Hansen-Löslichkeitsparameter (HSP)-Peche aufgetragen und in inerten Durchlauföfen bei Temperaturen um zirka 1.300 °C zeitintensiv behandelt werden.

Prozessparameter

- Temperatur: ~1.300 °C
- Verweilzeit: mehrere Stunden
- Möglichst niedriger Ausschuss bei der Sphäronisierung
- Niedriger Preis

- Reinheit
- Partikelform
- Partikelgröße
- Homogenität
- Oberflächenstruktur
- Hoher Anteil von Flockengraphit
- Hoher Anteil von Kohlenstoff im Endprodukt

Aktivmaterialherste	rodukt ellung: Elektr	ion rolyt		Lösemittel + LiPF ₆ -Salz
LösemittelDMCEMCDECEC $-$ CO + O2CO2MethanolEthylenoxid	$\frac{\text{LiPF}_6-\text{Salz}}{\text{LiPF}_6(s)}$	Kor	tinuierliche En des Elektrolyt	tnahme
Aktivmaterialier Kathode NMC Anode Kathode LFP Anode	Elektrolyt	Inal Stromableiter	tive Komponer Separator	nten Gehäuse
Vorproduktproduktion	Mischen	Rühren		Entnahme

Prozessschritte

- Der Elektrolyt besteht aus Leitsalz (bspw. Lithiumhexafluorophosphat LiPF₆) und Lösemittel (etwa Dimethylcarbonat – DMC, Ethylencarbonat – EC, Diethylcarbonat – DEC oder Ethylmethylcarbonat – EMC). Beides wird im Reaktor zusammengeführt.
- LiPF₆ ist als Leitsalz der wichtigste Elektrolyt-Bestandteil und macht den Hauptanteil der Kosten aus.
- Durch Additive (bspw. Vinylencarbonat VC) wird die Langzeitstabilität der Batterie verbessert.
- Verunreinigungen mit Wasser rufen eine Zersetzungsreaktion von LiPF₆ hervor, weshalb Rückstände sowie die Entstehung von Wasser vermieden werden müssen.

Eigenschaften

- Aufgrund des Bedarfs in der Produktion sowie der Entstehung von Flusssäure (HF) bei Kontakt mit Wasser oder Luftfeuchte sind die Produktion und das Handling von Elektrolyten kritisch.
- Elektrolyt bestimmt maßgeblich die Temperaturstabilität und Performance einer Lithium-Ionen-Batterie.
- Elektrolyt macht rund zehn Prozent des Zellgewichts aus, weswegen sowohl leichtere Elektrolyte als auch Elektrolyte mit besseren oder anderen Eigenschaften künftig bedeutsamer werden.

Prozessparameter

- Salzkonzentration: 0,8 2 mol/L
- Typische Zusammensetzung:
 - Salz: 12,6 Gew.-%
 - Additive: 0 10 Gew.-%
 - Lösemittel: ca. 85 Gew.-%

- Ionenleitfähigkeit
- Wassergehalt
- Temperaturbeständigkeit
- Reinheit der Ausgangsstoffe
- Reinheit des Endprodukts

Übersicht

Inaktive Komponenten

Aktivmaterialien			Inaktive Komponenten		
Kathode NMC Kathode LFP	Anode	Elektrolyt	Stromableiter	Separator	Gehäuse

Beschreibung

Im Folgenden werden die Produktionsschritte zur Fertigung der Stromableiter (Elektrodenfolien) und des Separators sowie die Zellgehäuseproduktion einer Rund- beziehungsweise prismatischen Zelle sowie einer Pouch-Zelle erläutert. Die obenstehende Abbildung zeigt eine aufgeschnittene Rundzelle mit direktem Blick auf Kathode, Anode und Separator.

Die Elektrodenfolien erfüllen die Aufgabe des Transports der Elektronen von den Aktivmaterialien in die Kathode und die Anode zu den Zellableitern, die den Strom aus der Batteriezelle herausleiten. Sie haben darüber hinaus einen hohen Anteil an der zellinternen Wärmeleitung.

Der Separator dient als elektrischer Isolator und Transportmedium für Ionen zwischen Kathode und Anode. Zur Sicherstellung der Ionenleitfähigkeit füllen sich die Mikroporen in der Zellproduktion mit Elektrolyt.

Das Zellgehäuse dient dem mechanischen Schutz vor äußeren Einflüssen und der Vermeidung von Elektrolytaustritt sowie chemischen Reaktionen mit der Umgebung.

- Die inaktiven Komponenten sind nicht direkt an den elektrochemischen Prozessen zur Energiespeicherung innerhalb der Batteriezelle beteiligt.
- Diese Komponenten tragen wesentlich zur dauerhaften und sicheren Funktion einer Batteriezelle bei und bilden in vielerlei Hinsicht zentrale Differenzierungsmerkmale.

Elektrodenfolienfertigung

Inaktive Komponenten: Elektrodenfolie

Prozessschritte

- Die Folie aus Kupfer oder Aluminium wird durch einen **kontinuierlichen Walzprozess** auf eine definierte Dicke gewalzt.
- Die obere und untere Walze sind gegenüberliegend angeordnet und verdichten die Folie mit einem **definierten Liniendruck** auf die gewünschte Dicke.
- Liniendruck und Vorschubgeschwindigkeit der Folie werden über den Walzprozess konstant gehalten, um eine gleichmäßige Verdichtung zu erreichen.
- Zur Erhöhung der Genauigkeit und Reproduzierbarkeit wird die Dicke der Folie nach dem Walzen gemessen.
- Die Sauberkeit der Walzen ist entscheidend für den späteren Verarbeitungsprozess, da Fremdpartikel zu Oberflächenschäden führen können.
- Die Walzen und die Folie können durch Absaugen (in Kombination mit Druckluft) oder durch Bürsten gereinigt werden.

Prozessparameter

- Konstante Vorschubgeschwindigkeit
- Konstanter Liniendruck
- Walzendurchmesser

- Oberflächengüte
- Verunreinigungen
- Gleichmäßige Foliendicke
- Oberflächenrauheit der Walzen

Separator-Übersicht

Inaktive Komponenten: Separator

Beschreibung

Zur Produktion mikroporöser Separatoren existieren **mehrere Technologien**, die sich hinsichtlich der verwendeten **Rohmaterialien** und **Herstellung** unterscheiden. Die Fertigungsprozesse sind unten aufgeführt und unterteilen sich primär in einen Nassprozess auf Basis von PE und einen Trockenprozess auf Basis von PE oder PP. Zum Abschluss wird ein typischerweise keramisches Komposit mit einer Gravurwalze auf den Separator aufgetragen, um die Anforderungen einer Lithium-Ionen-Batterie zu erfüllen.

Der Nassprozess auf PE-Basis ist das am weitesten verbreitete Herstellungsverfahren. Die Anlagen sind bis zu 110 Meter lang und können die Separatorfolie mit einer Arbeitsbreite von bis zu 5,50 Metern produzieren. Der Nassprozess kann zwar variieren, besteht prinzipiell aber aus den unten gezeigten Verfahrensschritten.

Beim **Trockenprozess** werden als Ausgangsstoffe die **teilkristallinen Thermoplasten PP oder PE** eingesetzt. Auch dabei können die nachstehend erläuterten Verfahrensschritte variieren.

Korthauer et al., Handbuch Lithium-Ionen-Batterien, 2015;

Lingappan et al., A comprehensive review of separator membranes in lithium-ion batteries, 2023

Nassprozess (I/III) Inaktive Komponenten: Separator UHMWPE + Additive Mineralöl-Schmelzpumpe Schmelzfilter Breitschlitzdüse Schmelze Doppelschneckenextruder Kühlwalze

Extrusion

- Als Ausgangsstoffe für den Nassprozess werden Gemische aus HDPE (Polyethylen mit hoher Dichte) oder UHMWPE (Ultrahoch-molekulares Polyethylen) oder Mineralöle als Weichmacher sowie einige Additive verwendet.
- Das Gemisch wird in einem gleichlaufenden Doppelschneckenextruder dosiert, wo es durch Wärmezufuhr und Scherung homogenisiert und aufgeschmolzen wird. Eine Schmelzpumpe erzeugt einen konstanten, hohen Druck, mit dem die Schmelze zur Breitschlitzdüse gefördert wird.

Castfilm

film, wobei es auf eine über die Arbeitsbreite und den Umfang gleichmäßige Abkühlung ankommt.

Biaxiale Verstreckung

- Beim biaxialen simultanen Verstrecken werden die Folienränder von Kluppen gehalten, deren Abstand sich sowohl in Laufrichtung als auch guer dazu vergrößert.
- Beim biaxialen sequenziellen Verstrecken wird zuerst mittels Walzen in Längsrichtung verstreckt und danach mittels Kluppen in Querrichtung.

Prozessparameter

- Dickenregelung
- Temperatur (Schmelze, Schlitzdüse, Kühlwalze)
- Bahngeschwindigkeit

Qualitätsmerkmale

- Konstante Oberflächeneigenschaften und Dicke
- Homogenität und Reinheit der Rohstoffe
- Konstante Temperatur und Bahngeschwindigkeit
- Sauberkeit in der Prozessumgebung

Castfilm

Nassprozess (II/III)

Inaktive Komponenten: Separator

Extraktion

- Das Ziel der Extraktion ist die Auswaschung des Mineralöls aus der extrudierten, verstreckten Folie. Die herausgelösten Moleküle hinterlassen Poren, so dass eine mikroporöse Struktur entsteht.
- Mögliche Lösungsmittel sind Chlor- und Fluorkohlenwasserstoffe. Am weitesten verbreitet ist das in der EU verbotene DCM (Dichlormethan).
- Für eine wirtschaftliche Produktion ist ein weitgehendes **Recycling** des DCM und des Mineralöls erforderlich, die damit wieder in den Prozess eingespeist werden.

Trocknung

• Direkt nach der Extraktion erfolgt die **Trocknung**, mit der das DCM aus den entstandenen Poren durch Verdampfung entfernt wird.

Thermofixierung

Prozessparameter

- Temperierung der Trocknungszonen
- Verwendetes Lösungsmittel
- Extraktionsgeschwindigkeit
- Bahngeschwindigkeit

- Recycling-Grad der Lösungsmittel
- Vollständigkeit der Extraktion ohne Reststoffe
- Technische Sauberkeit
- Homogenität der Poren

Nassprozess (III/III)

Inaktive Komponenten: Separator

Abzug/Qualitätskontrolle

- Die nach dem Verlassen der Thermofixierung fertig hergestellte Separatorfolie wird in einem Abzugständer an den Rändern beschnitten, und es wird eine Inline-Qualitätskontrolle (hinsichtlich Dicke, optischer Defekte etc.) vorgenommen.
- Folgende Pr
 üfverfahren k
 önnen zur Qualit
 ätssicherung eingesetzt werden:
 - Dicke, Zugpr
 üfung, Durchsto
 ßpr
 üfung, Durchschlagspannung
 - Hg-Porosimetrie, Rasterelektronenmikroskopie, Luftdurchlässigkeitstest nach Gurley
 - Schrumpfmessung, DSC, TMA, Hot-Tip-Test
 - Ionenleitfähigkeit, Elektrolytbenetzung
 - Optische Inspektion

Aufwicklung

- Der letzte Arbeitsschritt besteht im kontrollierten Aufwickeln, das in der Regel auf einem Wickler mit voller Arbeitsbreite von maximal 5,50 Metern erfolgt.
- Die aufgewickelten Rollen können weiter konfektioniert oder verpackt werden.

Prozessparameter

- Wickelgeschwindigkeit
- Eingesetzte Prüfverfahren
- Schnittgröße
- Verpackungsgröße

- Technische Sauberkeit
- Wickelqualität

Extrusion

 In einem Einschneckenextruder wird das PE-/PP-Granulat durch Wärmezufuhr und Scherung aufgeschmolzen und homogenisiert.

Blasfolie

- Im Trockenprozess existiert ein Castfilm- und alternativ ein Blasfolien-Prozess.
- Beim Blasfolien-Prozess wird die Schmelze durch einen Ringspalt gepresst, so dass ein Schlauch entsteht, der von innen mit Luft durchströmt sowie von innen und außen gekühlt wird.

Schneiden

 Die Vorfolie wird nach dem Aufwickeln batchweise auf einer Schneidmaschine in schmalere Rollen überführt.

Prozessparameter

- Temperatur und Geschwindigkeit des Einschneckenextruders
- Innendruck des Blasfolienprozesses
- Druck und Temperatur des Laminierens

- Homogenität und Reinheit der Rohstoffe
- Foliendicke
- Verteilung und Größe der Lamellen
- Technische Sauberkeit

Trockenprozess (II/II)

Inaktive Komponenten: Separator

Laminieren

• Die Rollenware wird in einem Folgeschritt mit mehreren Lagen unter Druck und Temperatur zusammenlaminiert. So kann unter anderem eine "Trilayer"-Struktur "PP/PE/PP" erzeugt werden.

Längsrecken

- Zur Porenstrukturerzeugung ist eine Strukturierung in Reihe angeordneter Lamellen erforderlich, senkrecht zur Maschinenrichtung liegend. Diese Struktur wird durch einen Reckprozess erzeugt.
- Beim Längsrecken wird der Reckvorgang durch unterschiedliche Walzengeschwindigkeiten bei verschiedenen Temperaturen realisiert.
 - Kaltrecken: Initiierung des Porenwachstums
 - Warmrecken: Erzeugung und Vergrößerung der Poren
- Nach dem Recken wird der Separator mittels beheizter Walzen thermofixiert, um die Schrumpfwerte zu reduzieren.

Qualitätskontrolle/Aufwicklung

- Der Separator wird an den Rändern beschnitten und die Inline-Qualitätskontrolle (hinsichtlich Dicke, optischer Defekte etc.) vorgenommen.
- Anschließend wird der Separator aufgewickelt.

Prozessparameter

- Walzengeschwindigkeiten im Reckprozess
- Temperaturen im Reckprozess
- Bandgeschwindigkeit der Folie

- Technische Sauberkeit
- Wickelqualität
- Homogenität der Poren

Separatorbeschichtung

Inaktive Komponenten: Separator

Prozessschritte

- Alle nach dem Nass- oder Trockenprozess hergestellten PP- und PE-Separatoren können mit funktionellen Materialien beschichtet werden, um die thermische Stabilität oder Laminierbarkeit zu verbessern.
 Eine keramische Beschichtung beziehungsweise Imprägnierung von PET-Vliesen wird auch zur Herstellung hochtemperaturbeständiger Separatoren eingesetzt.
- Die Beschichtung erfolgt aufgrund der Anlagentechnik nach dem Primär-Schneidvorgang.
- Die keramischen Partikel aus Aluminumoxid (Al₂O₃), Aluminium-Oxid-Hydroxid (AlOOH) oder SiO₂ werden durch ein thermisches Verfahren bei hohen Temperaturen aus dem jeweiligen Metallchlorid hergestellt.
- Eine Suspension aus keramischen Partikeln und Binder wird mittels einer **Gravurwalze** auf die Separatorfolie aufgebracht.
- Nach der Beschichtung, die einseitig oder doppelseitig erfolgen kann, ist eine Trocknung erforderlich.

Prozessparameter

- Prozessdauer bei Partikelsynthese
- Wahl des Binders
- Härte der Rasterwalze
- Reinigungszyklus der Rasterwalze
- Temperaturprofil der Trocknung

- Partikelgrößenverteilung
- Partikelform
- Benetzbarkeit
- Homogenität der Beschichtung
- Beschichtungsdicke

Aktivmaterialien			Inaktive Komponenten			
Kathode NMC Kathode LFP	Anode	Elektrolyt	Stromableiter	Separator	Gehäuse	
		Slitting				

Prozessschritte

- Nach der Herstellung beziehungsweise im Anschluss an die Beschichtung werden die Separatoren mittels Schneidemaschinen auf die für die Zellfertigung benötigte Breite zugeschnitten.
- Beim Slitting wird ein breites Separatorband (Mutter-Rolle) in schmalere Separatorbänder (Tochter-Rollen) geschnitten.
- Beim Trennvorgang wird meist ein Primär-Schneidevorgang benötigt, um etwa die Arbeitsbreite von 5,50 Metern auf 1,50 Meter zu reduzieren. Danach erfolgt der Sekundär-Schneidevorgang, bei dem auf die für die Zellfertigung benötigte Breite konfektioniert wird.
- Anschließend werden Staub und Fremdpartikel durch spezielle Reinigungsvorrichtungen entfernt.

Prozessparameter

- Prozessdauer bei Partikelsynthese
- Wahl des Binders
- Härte der Rasterwalze
- Reinigungszyklus der Rasterwalze
- Temperaturprofil der Trocknung

- Partikelgrößenverteilung
- Partikelform
- Benetzbarkeit
- Homogenität der Beschichtung
- Beschichtungsdicke

Zellgehäusefertigung

Inaktive Komponenten: Zellgehäuse

Prozessschritte

- Das Tiefziehen ist ein Zugdruckumformverfahren, bei dem Blechzuschnitte zu einem einseitig offenen Hohlkörper gepresst werden. Wegen der guten Prozessführung eignet sich dieses Verfahren insbesondere für die Massenfertigung. Investitionen in Maschinen und Werkzeuge sind hoch.
- Das Rohmaterial wird mit einem Stempel durch eine Matrize gedrückt, so dass ein rundes oder prismatisches Gehäuse entsteht. Dieses Vorgehen wird in mehreren Stationen mit unterschiedlichen Werkzeuggeometrien (Stempel und Matrize) so oft wiederholt, bis die gewünschte Form des Gehäuses erreicht ist.
- Nach dem letzten Tiefziehschritt wird das überschüssige Material am oberen Ende sauber abgetrennt.
- Abschließend wird das Gehäuse gewaschen, getrocknet und geprüft.
- Als Alternative zur Zellgehäusefertigung kann auch das Rückwärtsfließpressen zum Einsatz kommen.

Prozessparameter

- Bauteilformat (rund oder prismatisch)
- Bauteilgröße (Bauteilhöhe)
- Material
- Blechdicke
- Umformkraft
- Ziehgeschwindigkeit

Qualitätsmerkmale

- Gleichmäßigkeit der Wandstärke
- Kantenbeschaffenheit
- Oberflächengüte
- Sauberkeit
- Restpartikel
- Spannungen im Material

Dolega, Peter, Ökologische und sozio-ökonomische Herausforderungen in Batterie-Lieferketten: Graphit und Lithium, 2020; Wurm et al., Anodenmaterial für Lithium-Ionen-Batterien, 2013

Herstellung Zelldeckel

Inaktive Komponenten: Zellgehäuse

Prozessschritte

- Die einzelnen Komponenten einer Deckelbaugruppe bestehen aus metallischen Bauteilen und aus Kunststoffbauteilen. Die metallischen Komponenten werden durch Stanzen, Feinschneiden, Kaltumformen, Tiefziehen, Ätzen oder Reibschweißen hergestellt sowie teilweise auch nachträglich galvanisch behandelt.
 Für Kunststoffbauteile kommt das Spritzgussverfahren zum Einsatz. Aufgrund der Empfindlichkeit von Bauteilen, die in der Baugruppe sicherheitsrelevante Aufgaben übernehmen müssen, werden manche Komponenten auch in gegurteter Form oder orientiert in speziellen Bauteilträgern der Montage bereitgestellt.
- Die Montage einer Deckelbaugruppe erfolgt zum Teil in Reinräumen mit vollautomatisierten Anlagen. Neben dem Handling der einzelnen Bauteile einer Deckelbaugruppe kommen in der Montage Prozesse wie das Laserschweißen, Nieten und Dosieren von Dichtmitteln zur Anwendung. Verschiedene Komponenten beinhalten Poka-Yoke-Elemente, um eine fehlerfreie Montage zu garantieren.
- Während und nach der Montage erfolgen **optische und elektrische Prüfungen**. Dichtheitsprüfungen von lasergeschweißten Verbindungen sind ebenfalls erforderlich.

Prozessparameter

- Deckelbaugruppengröße
- Passgenauigkeit der Bauteile
- Anzahl der Komponenten
- Montagegeschwindigkeit

- Sauberkeit
- Restpartikel
- Geometrische Maßhaltigkeit
- Dichtheit

Herstellung Pouch-Gehäuse 🚺

Inaktive Komponenten: Zellgehäuse

Prozessschritte

- Die Pouchfolie besteht aus einer Kunststoffverbundfolie. Als Kunststoffe werden Polyamide und Polypropylen eingesetzt. Aluminium dient als Diffusionssperre f
 ür Wasser und den Elektrolyten.
- Die Bereitstellung der Pouchfolie erfolgt über eine diskontinuierlich arbeitende Spule.
- In der Presse wird die abgewickelte Folie mittels zweier Klemmen mit einer definierten Klemmkraft festgehalten.
- Der Stempel drückt die Folie in die **Matrize**, so dass die endgültige Form entsteht. Das überschüssige Material wird am oberen Ende sauber abgetrennt.
- Stempelkraft und Stempelgeschwindigkeit üben dabei einen maßgeblichen Einfluss auf die Qualität des Gehäuses aus.

Prozessparameter

- Stempelgröße
- Stempelform
- Matrizenhöhe
- Klemmkraft
- Druckkraft
- Stempelgeschwindigkeit

- Qualitätsmerkmale
- Oberflächengüte
- Verunreinigungen
- Gleichmäßigkeit der Wanddicke
- Risse im Material
- Kantenbeschaffenheit
- Foliendicke

Leitfäden zur Elektromobilität

In mehreren Veröffentlichungen rund um die Batterie stellt der Lehrstuhl "Production Engineering of E-Mobility Components" (PEM) der RWTH Aachen in Zusammenarbeit mit dem VDMA in deutscher und englischer Sprache die Prozess- und Recycling-Ketten von der Zelle bis zum Batteriepack dar und geht auf die Herstellungsweisen der unterschiedlichen Komponenten ein.

Online verfügbar

RWITHAACHEN

UND -PACKS

RWTHAACHEN

VDMA

Die Veröffentlichung "Produktion einer All-Solid-State-Batteriezelle" erläutert die Fertigungstechnologien und -ketten für die drei Elektrolytklassen der All-Solid-State-Batteriezelle. Darüber hinaus wird die eventuelle Übertragbarkeit von Kompetenzen aus der Produktion von Lithium-Ionen-Batteriezellen beleuchtet.

2. Auflage ISBN 978-3-947920-28-0

Hrsa. PEM der RWTH Aachen & VDMA

Montageprozess eines Batteriemoduls und -packs

3. Auflage ISBN 978-3-947920-02-0

> Produktionsprozess einer Lithium-Ionen-Batteriezelle

EINER LITHIUM-IONEN-BATTERIEZELLE

4. Auflage ISBN 978-3-947920-26-6

TÜVRheinland*

Batteriesicherheit anhand der ECE-R100

1. Auflage ISBN: 978-3-947920-47-1

Recycling von Lithium-Ionen-Batterien Aufege 2023

2. Auflage ISBN 978-3-947920-43-3

32 von 32